Concepts and Techniques

A Comprehensive knowledge and understanding of concepts and relationships.
Highly effective selection and application of mathematical techniques and algorithms to find efficient and accurate solutions to routine and complex problems in a variety of contexts.

Successful development and application of mathematical models to find concise and accurate solutions.
Appropriate and effective use of electronic technology to find accurate solutions to routine and complex problems.

B Some depth of knowledge and understanding of concepts and relationships.

Mostly effective selection and application of mathematical techniques and algorithms to find mostly accurate solutions to routine and some complex problems in a variety of contexts.
Attempted development and successful application of mathematical models to find mostly accurate solutions.

Mostly appropriate and effective use of electronic technology to find mostly accurate solutions to routine and some complex problems.

C Generally competent knowledge and understanding of concepts and relationships.
Generally effective selection and application of mathematical techniques and algorithms to find mostly accurate solutions to routine problems in different contexts.

Application of mathematical models to find generally accurate solutions.

Generally appropriate and effective use of electronic technology to find mostly accurate solutions to routine problems.

D Basic knowledge and some understanding of concepts and relationships.
Some selection and application of mathematical techniques and algorithms to find some accurate solutions to routine problems in context.

Some application of mathematical models to find some accurate or partially accurate solutions.
Some appropriate use of electronic technology to find some accurate solutions to routine problems. relationships.

Attempted selection and limited application of mathematical techniques or algorithms, with limited accuracy in solving routine problems.
Attempted application of mathematical models, with limited accuracy.

Attempted use of electronic technology, with limited accuracy in solving routine problems.

Reasoning and Communication

Comprehensive interpretation of mathematical results in the context of the problem.

Drawing logical conclusions from mathematical results, with a comprehensive understanding of their reasonableness and limitations.

Proficient and accurate use of appropriate mathematical notation, representations, and terminology.

Highly effective communication of mathematical ideas and reasoning to develop logical and concise arguments.

Formation and testing of appropriate predictions, using sound mathematical evidence.

Mostly appropriate interpretation of mathematical results in the context of the problem.

Drawing mostly logical conclusions from mathematical results, with some depth of understanding of their reasonableness and limitations.

Mostly accurate use of appropriate mathematical notation, representations, and terminology.

Mostly effective communication of mathematical ideas and reasoning to develop mostly logical arguments.
Formation and testing of mostly appropriate predictions, using some mathematical evidence.

Generally appropriate interpretation of mathematical results in the context of the problem.
Drawing some logical conclusions from mathematical results, with some understanding of their reasonableness and limitations.

Generally appropriate use of mathematical notation, representations, and terminology, with reasonable accuracy.

Generally effective communication of mathematical ideas and reasoning to develop some logical arguments.
Formation of an appropriate prediction and some attempt to test it using mathematical evidence.

Some interpretation of mathematical results.
Drawing some conclusions from mathematical results, with some awareness of their reasonableness.

Some appropriate use of mathematical notation, representations, and terminology, with some accuracy.

Some communication of mathematical ideas, with attempted reasoning and/or arguments.
Attempted formation of a prediction with limited attempt to test it using mathematical evidence.

Limited interpretation of mathematical results.
Limited understanding of the meaning of mathematical results, their reasonableness or limitations.

Limited use of appropriate mathematical notation, representations, or terminology, with limited accuracy.
Attempted communication of mathematical ideas, with limited reasoning

Limited attempt to form or test a prediction.

Stage One: Mathematical Investigation - Box of Chocolates

In this investigation, three separate pieces of chocolate and the packaging are designed, consisting of one simple standard shape and two complex solid shapes. The two complex designs require two types of shapes to be utilized, planar faces and curved surfaces. This investigation tests measurement skills learnt throughout the term. Word has been used to layout the 5 parts of the investigation. The five parts comprise of the design of the three unique shapes, the volume, surface area and costing of the tray and packaging box and a conclusion, all parts have been clearly depicted with all working out and sketches.

Part One - The Design
\rightarrow Simple Design - Sphere

\rightarrow Complex Design - Octagonal Prism \& Semi-sphere

\rightarrow Complex Design - Cylinder \& Right Hexagonal Pyramid

Part Two - Estimating and Calculating Volume
a) Estimating Volume

Estimations were made by manipulating other formulas for other shapes and replacing π with 3 . Then true volume was calculated, followed by calculating absolute and percentage error.

Sphere
$V A=4 / 3 \times 3 \times 20 \times 20 \times 20=32000 \mathrm{~mm}^{3}$
\rightarrow Octagonal Prism \& Semi Sphere
\leftarrow Would have been cleaver to show formula leg $\frac{4}{3} \times \pi \times r 3$

Octagonal Prism
VA $=2 \times 2 \times 10^{2} \times 30=12000 \mathrm{~mm}^{3}$
Semi Sphere

$V A=4 / 3 \times 3 \times 20 \times 20 \times 20=32000 \div 2=16000 \mathrm{~mm}^{3}$
Total $=12000+16000=28000 \mathrm{~mm}^{3}$
(interpretation egg the actual) volume
\rightarrow Cylinder \& Hexagonal Pyramid
Cylinder
$\mathrm{VA}=3 \times 20^{2} \times 30=36000 \mathrm{~mm}^{3}$
Hexagonal Pyramid \longleftarrow A cone would have been a
$V A=1 / 2 \times 10^{2} \times 20=1000 \mathrm{~mm}^{3}$ simple shape to use for your estimation
Total $=36000+1000=37000 \mathrm{~mm}^{3}$
b) True Volume
\rightarrow Sphere
VF $=4 / 3 \times \pi \times 20 \times 20 \times 20=33510.3 \mathrm{~mm}^{3}$
\rightarrow Octagonal Prism \& Semi Sphere

Octagonal Prism

$V E=2(1+\sqrt{ } 2) \times 10^{2} \times 30=14485.3 \mathrm{~mm}^{3}$

Semi Sphere

VI $=4 / 3 \times \pi \times 20 \times 20 \times 20=32000 \div 2=16755.2 \mathrm{~mm}^{3}$
Total Volume $=14485.3+16755.2=31240.5 \mathrm{~mm}^{3}$
\rightarrow Cylinder \& Hexagonal Pyramid (interpretation)

Cylinder

$V E=\pi \times 20^{2} \times 30=37699.1 \mathrm{~mm}^{3}$

Hexagonal Pyramid

$$
V E=\sqrt{ } 3 / 2 \times 10^{2} \times 20=1732 \mathrm{~mm}^{3}
$$

Total Volume $=37699.1+1732=39431.1 \mathrm{~mm}^{3}$
c) Comparison \& Wastage

Explanalion needed
Absolute Error $=|\mathrm{VA}-\mathrm{VE}|$

$$
|V A-V E|
$$

Percentage Error $=$ x 100\%
VE
\rightarrow Sphere
$\underline{\text { Absolute Error }}=32000-33510.3=|-1510.3|=1510.3 \mathrm{~mm}^{\mathbf{3}}$
$\underline{\text { Percentage Error }}=\frac{|32000-33510.3|}{33510.3} \times 100 \%=4.5 \%$

\rightarrow Octagonal Prism \& Semi Sphere

```
Absolute Error \(=28000-31240.5=|-3240.5|=3240.5 \mathrm{~mm}^{3}\)
    |28000-31240.5|
Percentage Error \(=\quad \times 100 \%=10.3 \%\)
    31240.5
\(\rightarrow\) Cylinder \& Hexagonal Pyramid
```

```
\(\underline{\text { Absolute Error }}=37000-39413.1=|-2413.1|=\mathbf{2 4 1 3 . 1} \mathrm{mm}^{\mathbf{3}}\)
    \(|37000-39413.1|\)
Percentage Error \(=\quad \times 100 \%=6.1 \%\)
    39413.1
```

Above, absolute and percentage error are shown for the volume calculations for the sphere. As shown in the calculations above, the estimation was slightly inaccurate. A more accurate prediction could have been made through manipulating other formulas. Wastage is a detriment to a business, costs could be reduced by constructing pieces which are standard and can be efficiently stored and minimizing spare room in the box, resulting in cost-efficient pieces.

Part Three - Calculating Surface Area

Above is the packaging box, a net diagram has been constructed to find the surface area. The following calculations show my method of working out the surface area of the packaging box:
$170 \times 50=8500 \mathrm{~mm}^{2}$
$170 \times 80=13600 \mathrm{~mm}^{2}$
$50 \times 80=4000 \mathrm{~mm}^{2}$
Total $=2(8500)+2(13600)+2(4000)=52200 \mathrm{~mm}^{2}$
SA

Figure 1 depicts the plastic tray which will hold and protect the three unique chocolate pieces inside the box. A rectangle and 2 cylinders with unique
 measurements have been used to keep the three pieces of chocolate in. neigitt make

Figure 2:

Figure 2 depicts the net diagram of the plastic tray. Dimensions of 170 mm (length) x 80 mm (width) $\times 50 \mathrm{~mm}$ (height) have been used. The following calculations show my method of finding the total surface area of the tray:
$170 \times 50=8500 \mathrm{~mm}^{2}$
$170 \times 80=13600 \mathrm{~mm}^{2}$
$50 \times 80=4000 \mathrm{~mm}^{2}$
$13600+2(4000)+2(8500)=38600 \mathrm{~mm}^{2}$
Cylinder (without top and bottom): $2 \times \pi \times 20 \times 50=6283.2 \mathrm{~mm}^{2}$
Cylinder (without top and bottom): $2 \times \pi \times 20 \times 40=5026.5 \mathrm{~mm}^{2}$
Rectangle: $2(20 \times 20+50 \times 20+50 \times 20)=4800-20 \times 20-20 \times 20=4000 \mathrm{~mm}^{2}$
\rightarrow a simpler way is $20 \times 50 \times 4=4000 \mathrm{~mm}^{2}$
Total Surface Area $=38600+6283.2+5026.5+4000=53909.7 \mathrm{~mm}^{2}$

Part Four - Calculating Cost

Chocolate Cost $=\$ 20.50$ for a 1 kg bag
Piece 1 - Sphere \rightarrow Volume $=33510.3 \mathrm{~mm}^{3}$
$33510.3 \div 1000=33.5103 \mathrm{~cm}^{3}$
$1 \mathrm{~cm}^{3}=1 \mathrm{gram}$
$33.5103 \mathrm{~cm}^{3}=33.5 \mathrm{~g}$

```
(g to kg)
33.5 \div1000=0.033kg
0.033 > 20.50=$0.68
Piece 2- Octagonal Prism & Semi Sphere }->\mathrm{ Total Volume = 14485.3+16755.2
= 31240.5 mm
31240.5\div1000=31.23\mp@subsup{\textrm{cm}}{}{3}
1cm}\mp@subsup{}{}{3}=1\mathrm{ gram
31.23 cm}\mp@subsup{}{}{3}=31.23\textrm{g
(g to kg)
31.23\div1000=0.031kg
0.031 < 20.50=$0.63
Piece 2- Cylinder & Hexagonal Pyramid }\boldsymbol{->}\mathrm{ Total Volume = 37699.1 + 1732
= 39431.1 mm
39431.1\div1000=39.43cm}\mp@subsup{}{}{3
1cm}\mp@subsup{}{}{3}=1\textrm{gram
39.43cm}\mp@subsup{}{}{3}=39.43\textrm{g
(g to kg)
39.43 \div1000=0.039kg
0.039 < 20.50=$0.80
Tray = $4.30 per square meter
TSA of Tray = 53909.7 mm
53909.7\div1000000=0.0539097m}\mp@subsup{m}{}{2}=0.05\mp@subsup{\textrm{m}}{}{2
4.30 < 0.05=$0.22
Packaging Box \(=\$ 2.80\) per square meter
TSA of Box = 52200mm
```

$$
52200 \div 1000000=0.05 \mathrm{~m}^{2}
$$

$$
2.80 \times 0.05=\$ 0.14
$$

Total Cost $=0.68+0.63+0.80+0.22+0.14=\$ 2.47=\$ 2.50$

In this investigation, measurement skills have been used to construct three uniquely designed pieces of chocolate, wherein, the volume will need to be found and detailed sketches need to be drawn. Estimations were made by manipulating other formulas for other shapes and replacing π with 3 . Then true volume was calculated, followed by calculating absolute and percentage error. A plastic tray and packaging box are sketched out, including net diagrams which were used to find the surface area, lastly the costing is added up, overall achieving a $\$ 2.50$ cost. \qquad
If a business were to construct these pieces I have created, it would not be costefficient as wastage has occurred, costs could be reduced by constructing pieces which are standard and can be efficiently stored and minimizing spare room in the box.

Throughout the investigation, various assumptions have been made. It was presumed that it was a solid piece of chocolate, not being hollow or filled with anything other than chocolate, the thickness of the tray was also assumed. The limitations in the investigation were the given dimensions, being 170 mm (length) x 80 mm (width) $\times 50 \mathrm{~mm}$ (height), these restricted the chocolate piece sizes.

To the left is a scaled Diagram of one of the complex pieces I have designed, the octagonal prism and semi-sphere.

Through attentive calculations, detailed 3D sketches and various net diagrams, volume and surface area was found for each of the 3 pieces, then the packaging box and plastic tray, subsequently transferred to cm^{2} in which the price was retrieved through converting it to grams then to kilograms, finally receiving a price of $\$ 2.50$. Overall, the investigation conducted could be defective due to having ranging volumes and the shapes used for the tray could possibly cause the complex shapes not to fit in appropriately.

Appendices

> Volume $V A=4 / 3 \times 3 \times 20 \times 20 \times 20=32000 \mathrm{~mm}^{3}$ $V E=4 / 3 \times \pi \times 20 \times 20 \times 20=33510.3 \mathrm{~mm}^{3}$ SurfaceArea $=4 \times \pi \times 20^{2}=5026.55 \mathrm{~mm}^{2}$
Cutagonal frism

volume

$V A=2 \times 2 \times 10^{2} \times 30=12000 \mathrm{~mm}^{3}$ $V E=2(1+\sqrt{2}) 10^{2} \times 30$ $=14485.28 \mathrm{~mm}^{3}$
Surface Area $=$

$$
8 a h+4(1+\sqrt{2}) a^{2}
$$

$$
8 \times 10 \times 30+4(1+\sqrt{2}) \times 10^{2}=3365.69 \mathrm{mp}^{2}
$$

isphere
$-2 \Rightarrow 16000 \mathrm{~mm}^{3}$
$4 / 3 \times 3 \times 20 \times 20 \times 20=32000 \mathrm{~mm}^{3}$
$4 / 2 \times \pi \times 20 \times 20 \times 20=33510.3 \mathrm{~mm}^{3}$
$-2 \Rightarrow 16755.2 \mathrm{~mm}^{3}$
$1-20 \times 20$
$+8 \times 10 \times 30+4(1+\sqrt{2}) \times 1$

$\times 10^{2}-\pi \times 20^{2}$
$1622.3 \mathrm{~mm}^{2}$

> volume
$524061=226105 \mathrm{~m}$

Appendices

Net Diagram and total surface area of the packaging box.

Various Sketches, Net Diagram and total surface area of the plastic tray.

Calculating the cost for the packaging box, chocolate and the tray.

Tray $=\$ 4.30$ per square metre
TSA of Tray $=53909.7 \mathrm{~mm}^{2}$ $53909.7 \div 1000000=0.0539097 \mathrm{~m}^{2}$
$4.30 \times 0.05=\$ 0.22$
Packaging $B O x=\$$
TSA of BCX $=5$
$2.80 \times 0.05=\$ 0.1$

```
Total= 0
```

Chocolde
$1 \mathrm{~cm}^{3}=$ lgram
Sphere $\rightarrow V=335$
$\left(1 \mathrm{~cm}^{3}=1 \mathrm{~g}\right) 33.5 \mathrm{~cm}^{3}-33.5 \mathrm{~g}$
$(\mathrm{~g}+0 \mathrm{~kg}) 33.5-1000=0$
$0.033 \times 20.50=\$ 0.68$

