PHYSICS FORMULA SHEET

Vectors are indicated by arrows. If only the magnitude of a vector quantity is used, the arrow is not used.

Symbols of common quantities

acceleration	ā	force	\vec{F}	magnetic flux	Φ	time	t
charge	q	frequency	f	mass	т	velocity	\vec{v}
displacement	\vec{s}	kinetic energy	E_K	momentum	\vec{p}	wavelength	λ
electric current	Ι	length	l	period	Т		
electromotive force	З	magnetic field	\vec{B}	potential difference	ΔV		

Magnitude of physical constants

acceleration due to gravity at the Earth's surface	$g = 9.80 \text{ m s}^{-2}$	Planck's constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$
constant of universal gravitation	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$	charge of an electron	$e = 1.60 \times 10^{-19} \text{ C}$
speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$	mass of an electron	$9.11 \times 10^{-31} \text{ kg}$
		mass of a proton	$1.67 \times 10^{-27} \mathrm{kg}$
Coulomb's Law constant	1 $8.00 \times 109 \text{ N} \text{m}^2 \text{ C}^{-2}$		-
	$\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^7 \mathrm{N}\mathrm{m^2}\mathrm{C}^{-2}$	mass of Earth	$5.97 \times 10^{24} \text{ kg}$
constant for the magnetic field around a conductor	$\frac{\mu_0}{2\pi} = 2.00 \times 10^{-7} \text{ T m A}^{-1}$	mean radius of Earth	$6.37 \times 10^{6} \mathrm{m}$

Topic 1: Motion and relativity

$\vec{v} = \vec{v}_0 + \vec{a}t$	\vec{v} = velocity at time <i>t</i> \vec{v}_0 = initial velocity	$v = \frac{2\pi r}{T}$	
$\vec{s} = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$		$\vec{g} = \frac{\vec{F}}{m}$	\vec{g} = gravitational field strength
$v^2 = v_0^2 + 2as$		$F = G \frac{m_1 m_2}{r^2}$	$r =$ distance between masses m_1 and m_2
$v_H = v\cos\theta$ $v_V = v\sin\theta$	heta = angle to horizontal	$v = \sqrt{\frac{GM}{r}}$	M = mass of object orbited by satellite r = radius of orbit
$E_K = \frac{1}{2}mv^2$		$T^2 = \frac{4\pi^2}{GM}r^3$	
$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$		$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$\gamma =$ Lorentz factor
$\vec{F} = m\vec{a}$		$t = \gamma t_0$	$t_0 =$ time interval in the moving frame of reference
$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$		$l = \frac{l_0}{\gamma}$	$l_0 = $ length in the moving object's frame of reference
$\vec{p} = m\vec{v}$		$p = \gamma m_0 v$	$m_0 = \text{mass}$ in the frame of reference where the object is stationary
$a = \frac{v^2}{r}$	r = radius of circle		

Topic 2: Electricity and magnetism

$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$	$r =$ distance between charges q_1 and q_2	$F = qvB\sin\theta$	$ heta$ = angle between magnetic field \vec{B} and velocity \vec{v}
$\vec{E} = \frac{\vec{F}}{q}$	\vec{E} = electric field	$r = \frac{mv}{qB}$	r = radius of circle
$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	r = distance from charge	$T = \frac{2\pi m}{qB}$	
$W = q \Delta V$	W = work done	$E_K = \frac{q^2 B^2 r^2}{2m}$	r = radius at which ions emerge from cyclotron
$E = \frac{\Delta V}{d}$	<i>d</i> = distance between parallel plates	$f = \frac{1}{T}$	f = frequency of the alternating potential difference
$\vec{a} = \frac{q\vec{E}}{m}$		$\Phi = BA_{\perp}$	A_{\perp} = area perpendicular to the magnetic field
$B = \frac{\mu_0}{2\pi} \frac{I}{r}$	r = distance from conductor	$\varepsilon = \frac{N\Delta\Phi}{\Delta t}$	N = number of conducting loops
$F = IlB\sin\theta$	heta = angle between magnetic field and direction of current	$\frac{V_{\rm input}}{V_{\rm output}} = \frac{N_{\rm input}}{N_{\rm output}}$	V = potential difference in transformer coils

Topic 3: Light and atoms

$v = f\lambda$		$W = hf_0$	$W =$ work function of the metal $f_0 =$ threshold frequency
$d\sin\theta = m\lambda$	d = distance between slits θ = angular position of m th maximum m = integer (0, 1, 2,)	$E_{K_{\max}} = eV_s$	$E_{K_{\text{max}}} =$ maximum kinetic energy of electrons V_s = stopping voltage
$\Delta y = \frac{\lambda L}{d}$	Δy = distance between adjacent minima or maxima L = slit-to-screen distance	$E_{K_{\max}} = hf - W$	
E = hf	E = energy of photon	$f_{\rm max} = \frac{e\Delta V}{h}$	$\Delta V =$ potential difference across the X-ray tube
$p = \frac{h}{\lambda}$		$E = \Delta mc^2$	E = energy

Table of prefixes

Prefix	Symbol	Value
tera	Т	1012
giga	G	109
mega	М	10^{6}
kilo	k	10^{3}
centi	с	10^{-2}
milli	m	10^{-3}
micro	μ	10-6
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}

Quarks

	-	
Quark	Symbol	Charge (e)
Up	u	2/3
Down	d	-1/3
Strange	S	-1/3
Charm	с	2/3
Тор	t	2/3
Bottom	b	-1/3