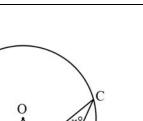
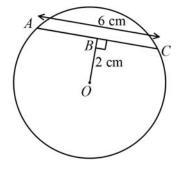
NAME :

Find *x* in the following diagrams giving reasons. (a)

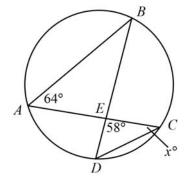
(b)

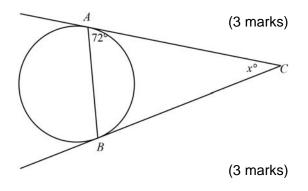
(c)





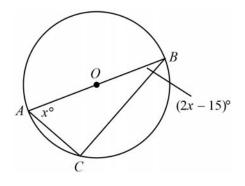
(2 marks)



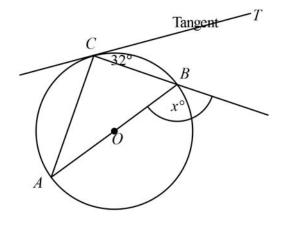


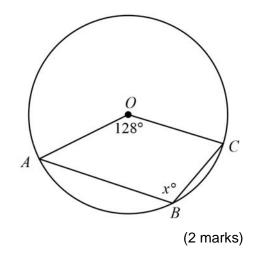
PLEASE TURN OVER

(e)



(3 marks)





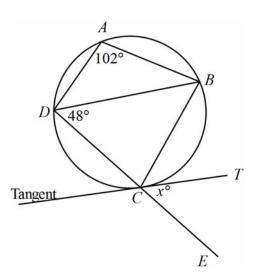
(f)

(g)

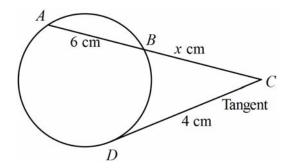
(h)

(i)

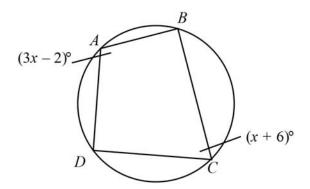
(j)



(4 marks)



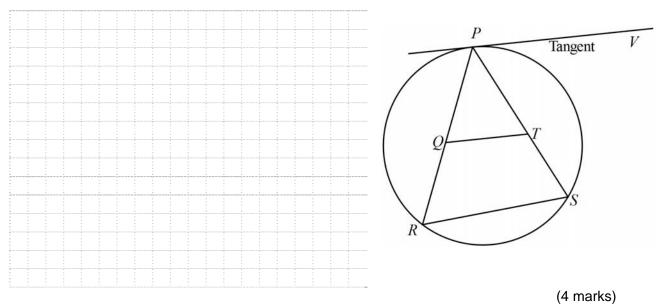
(3 marks)



(2 marks)

PV is a tangent to the circle and QRST is a cyclic quadrilateral.

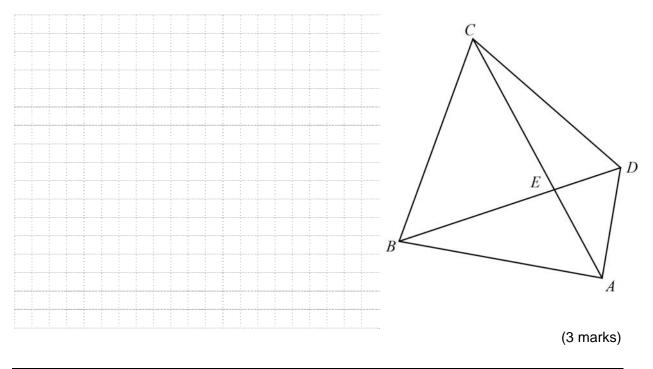
Prove that PV is parallel to QT.



QUESTION 3

ABCD is a quadrilateral. Diagonals AC and BD intersect at E.

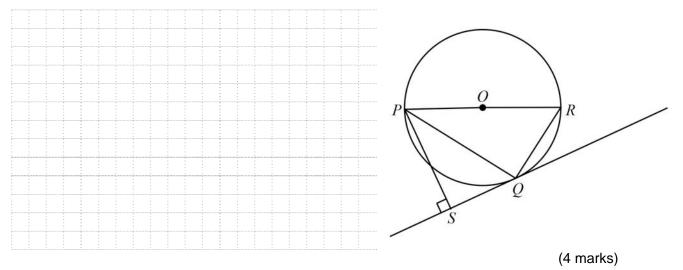
If AC bisects $\angle BAD$ and $\angle ABC = \angle AED$, prove that ABCD is a cyclic quadrilateral.



QUESTION 4

Triangle PQR is inscribed in a circle with PR as a diameter. The perpendicular from P to the

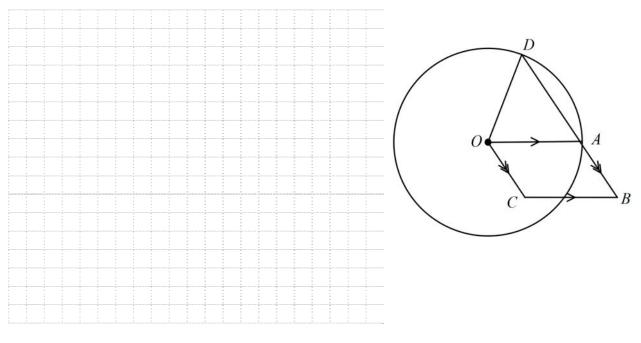
tangent at Q meets the tangent at S, prove that PQ bisects $\ \ \angle SPR$.



QUESTION 5

OABC is a parallelogram. A circle, centre at O and radius OA is drawn. BA produced meets the

circle at D. Prove that DOCB is a cyclic quadrilateral.



⁽⁵ marks)

QUESTION 6

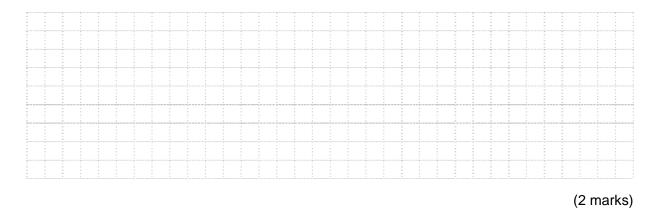
Triangle ABC has perpendiculars CX and BY as shown.



(a) What can be said about quadrilaterals AXOY and BXYC? Give reasons.

(2 marks)

```
(b) Prove that \angle XAO = \angle XYO = \angle XCB.
```



GEOMETRY

GEOMETRY

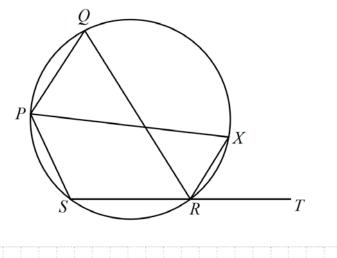
YEAR 11 SPECIALIST MATHEMATICS

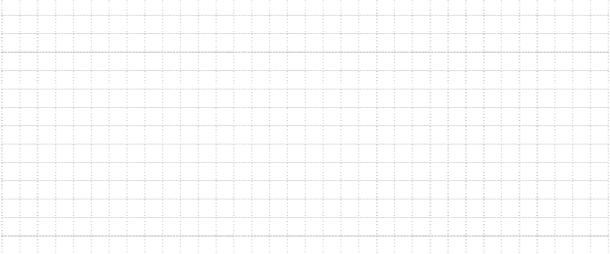
(c) Prove that AZ is perpendicular to BC.

	-																
	-																
		-															1
	-																
	-																
		: 		 		 				 		 					
	-																
	-																

(2 marks)

RX is the bisector of $\angle QRT$. Prove that PX bisects $\angle QPS$.



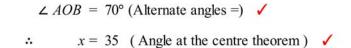


(3 marks)

QUESTION 1

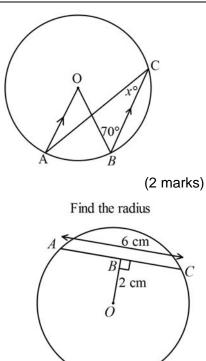
(b)

Find *x* in the following diagrams giving reasons. (a)



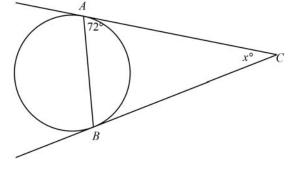
BC = 3 (Chord perpendicular to radius bisects it) \checkmark

 $\therefore \quad r = \sqrt{4+9} = \sqrt{13} \quad \checkmark$



 $\angle BAE = \angle BDC = 64$ (Angles in same segment) \checkmark (c) \therefore x = 180 - (58 + 64) (Triangle = 180) \checkmark \therefore $x = 58 \checkmark$

64° 58 D (3 marks) $\angle ABC = 72$ (Tangents from ext point theorem & Isos Triangle) \checkmark (d) $x = 180 - 2 \times 72 = 36$ (Triangle = 180) \checkmark ÷.



(3 marks)

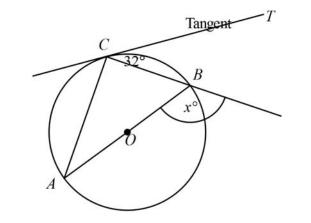
(2 marks) B

ro

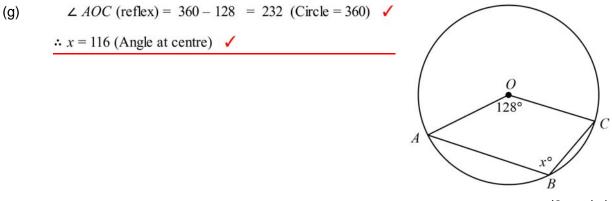
YEAR 11 SPECIALIST MATHEMATICSGEOMETRY(e) $\angle ACB = 90$ (Angle in semi-circle) \checkmark $\therefore x + (2x - 15) = 90$ (Triangle =180) \checkmark $\therefore 3x = 105$ \checkmark $\therefore x = 35$ \checkmark

(f) $\angle ACB = 90$ (Angle in semi-circle) \checkmark $\angle CAB = 32$ (Angle between tan and chord) \checkmark

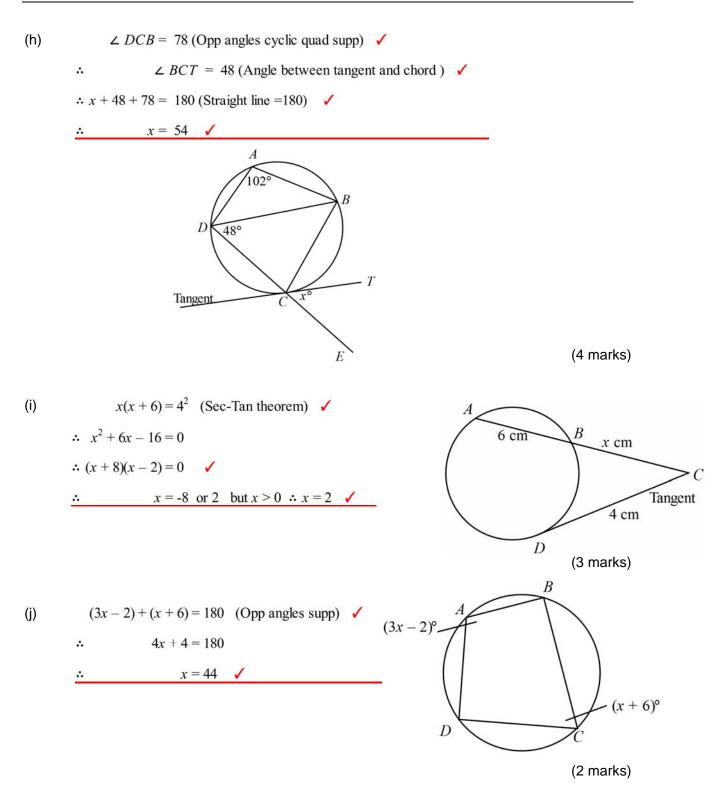
 \therefore x = 90 + 32 = 112 (Exterior angle of triangle) \checkmark



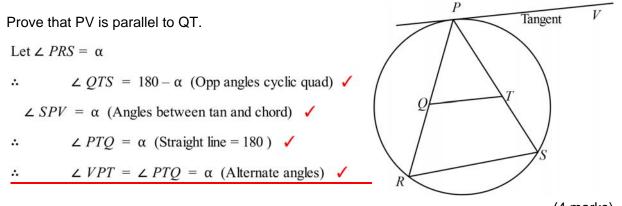
(3 marks)



(2 marks)



PV is a tangent to the circle and QRST is a cyclic quadrilateral.



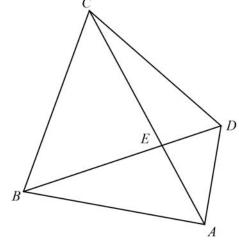
(4 marks)

QUESTION 3

ABCD is a quadrilateral. Diagonals AC and BD intersect at E.

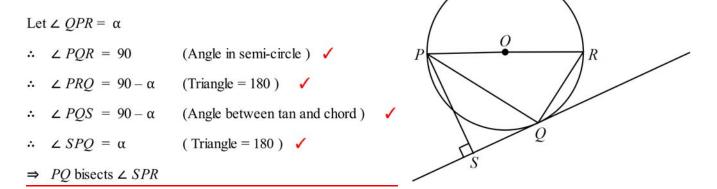
If AC bisects $\angle BAD$ and $\angle ABC = \angle AED$, prove that ABCD is a cyclic quadrilateral.

Let $\angle BAC = \angle CAD = \alpha$ (Given bisector) Let $\angle ABC = \angle AED = \beta$ (Given bisector) In $\triangle ABC \qquad \angle BCA = 180 - (\alpha + \beta)$ (Triangle = 180) \checkmark In $\triangle EDA \qquad \angle EDA = 180 - (\alpha + \beta)$ (Triangle = 180) \checkmark $\therefore \ \angle BCA = \angle BDA = 180 - (\alpha + \beta)$ $\Rightarrow AB$ subtends = \angle at C and D \therefore Cyclic Quad \checkmark



(3 marks)

Triangle PQR is inscribed in a circle with PR as a diameter. The perpendicular from P to the tangent at Q meets the tangent at S, prove that PQ bisects \angle *SPR*.



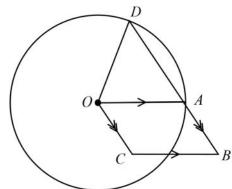
(4 marks)

QUESTION 5

OABC is a parallelogram. A circle, centre at O and radius OA is

drawn. BA produced meets the circle at D.

Prove that DOCB is a cyclic quadrilateral.



Let $\angle ABC = \alpha$

÷	$\angle COA = \alpha$ (Opp angles parallelogram) \checkmark
. .	$\angle OAD = \alpha$ (Corr angles =) \checkmark
÷	$\angle ODA = \alpha$ (Isos triangle radii) \checkmark
÷	$\angle AOD = 180 - 2\alpha$ (Triangle = 180) \checkmark
∴	$\angle COD = (180 - 2\alpha) + \alpha = 180 - \alpha$
$\Rightarrow \angle DOC + \angle DD$	$BC = (180 - \alpha) + \alpha = 180$ (Opp angles cyclic quad) \checkmark

(5 marks)

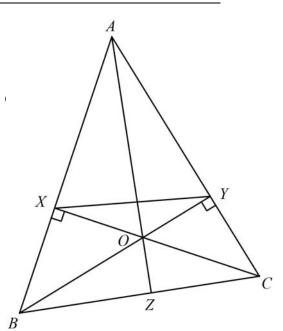
QUESTION 6

Triangle ABC has perpendiculars CX and BY as shown.

(a) What can be said about quadrilaterals AXOY and BXYC? AXOY cyclic quad $\angle AXO + \angle AYO = 90 + 90 = 180$ \checkmark $\angle BXC = \angle BYC = 90 \implies BXYC$ cyclic quad \checkmark

(2 marks)

(b) Prove that $\angle XAO = \angle XYO = \angle XCB$. $\angle XAO = \angle XYO$ (XAOY cyclic quad) $\angle XYO = \angle XYB = \angle XCB$ (Cyclic quad)

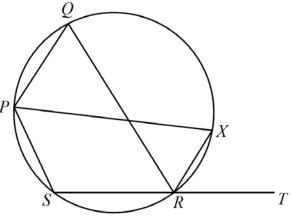


- (c) Prove that AZ is perpendicular to BC.
 - $\angle XAO = \angle XAZ \text{ and } \angle XCB = \angle XCZ$ $\Rightarrow \angle XAZ = \angle XCZ \Rightarrow \text{ Cyclic quad } XACZ \checkmark$ $\therefore \qquad \angle AXC = \angle AZC = 90 \Rightarrow AZ \perp BC \checkmark$

(2 marks)

QUESTION 7

RX is the bisector of $\angle QRT$. Prove that PX bisects $\angle QPS$. Let $\angle QRX = \angle XRT = \alpha$ (*Given*) $\angle QPX = \angle QRX = \alpha$ (Angles same segment) Since *PXRS* cyclic quad $\Rightarrow \angle SPX = \alpha$ (Exterior ang cyclic quad) \checkmark $\therefore \qquad \angle QPX = \angle SPX = \alpha \Rightarrow$ Bisected \checkmark



GEOMETRY