NAME :

QUESTION 1

Find x in the following diagrams giving reasons.
(a)

(2 marks)
(b)

Find the radius

(2 marks)
(c)

(d)

(e)

(3 marks)
(f)

(3 marks)
(g)

(h)

(4 marks)
(i)

(3 marks)
(j)

(2 marks)

QUESTION 2

PV is a tangent to the circle and QRST is a cyclic quadrilateral.
Prove that $P V$ is parallel to $Q T$.

QUESTION 3

$A B C D$ is a quadrilateral. Diagonals $A C$ and $B D$ intersect at E.
If $A C$ bisects $\angle B A D$ and $\angle A B C=\angle A E D$, prove that ABCD is a cyclic quadrilateral.

QUESTION 4

Triangle $P Q R$ is inscribed in a circle with $P R$ as a diameter. The perpendicular from P to the tangent at Q meets the tangent at S , prove that PQ bisects $\angle S P R$.

QUESTION 5

OABC is a parallelogram. A circle, centre at O and radius $O A$ is drawn. BA produced meets the circle at D . Prove that DOCB is a cyclic quadrilateral.

(5 marks)

QUESTION 6

Triangle $A B C$ has perpendiculars $C X$ and $B Y$ as shown.

(a) What can be said about quadrilaterals AXOY and BXYC? Give reasons.
\qquad
(b) Prove that $\angle X A O=\angle X Y O=\angle X C B$.
\qquad
(c) Prove that $A Z$ is perpendicular to $B C$.
\qquad

QUESTION 7

RX is the bisector of $\angle Q R T$. Prove that PX bisects $\angle \mathrm{QPS}$.

(3 marks)

QUESTION 1

Find x in the following diagrams giving reasons.
(a)

$$
\begin{aligned}
& \angle A O B\left.=70^{\circ} \text { (Alternate angles }=\right) \\
& \therefore \quad x=35(\text { Angle at the centre theorem) } \\
& \hline
\end{aligned}
$$

(2 marks)
(b)

$$
B C=3(\text { Chord perpendicular to radius bisects it })
$$

$\therefore \quad r=\sqrt{4+9}=\sqrt{13} \quad \checkmark$

(2 marks)
(c) $\quad \angle B A E=\angle B D C=64$ (Angles in same segment)
$\therefore \quad x=180-(58+64) \quad($ Triangle $=180)$
$\therefore \quad x=58 \quad \checkmark$

(d) $\angle A B C=72$ (Tangents from ext point theorem \& Isos Triangle)

$$
\therefore \quad x=180-2 \times 72=36(\text { Triangle }=180)
$$

(e)

$$
\angle A C B=90(\text { Angle in semi-circle })
$$

$\therefore x+(2 x-15)=90 \quad$ (Triangle $=180)$

	\therefore	$3 x$	$=105$
	\therefore	x	$=35 \quad \checkmark$

\qquad

(3 marks)
(f) $\angle \angle A C B=90$ (Angle in semi-circle)
$\angle C A B=32$ (Angle between tan and chord)
$\therefore \quad x=90+32=112$ (Exterior angle of triangle) \checkmark

(3 marks)
(g) $\angle A O C($ reflex $)=360-128=232($ Circle $=360)$ $\therefore x=116$ (Angle at centre) \checkmark

(2 marks)
(h)

$$
\angle D C B=78 \text { (Opp angles cyclic quad supp) }
$$

$\therefore \quad \angle B C T=48$ (Angle between tangent and chord)
$\therefore x+48+78=180($ Straight line $=180)$
$\therefore \quad x=54 \quad \checkmark$

(4 marks)
(i)

$$
\left.x(x+6)=4^{2} \quad \text { Sec-Tan theorem }\right)
$$

$\therefore x^{2}+6 x-16=0$
$\therefore(x+8)(x-2)=0$
$\therefore \quad x=-8$ or 2 but $x>0 \quad \therefore x=2 \quad \checkmark$

(j)

$$
\begin{aligned}
& & (3 x-2)+(x+6) & =180 \quad(\text { Opp angles supp }) \quad \\
& \therefore & 4 x+4 & =180 \\
& \therefore & x & =44 \quad \checkmark
\end{aligned}
$$

(2 marks)

QUESTION 2

PV is a tangent to the circle and QRST is a cyclic quadrilateral.
Prove that PV is parallel to QT.
Let $\angle P R S=\alpha$
$\therefore \quad \angle Q T S=180-\alpha($ Opp angles cyclic quad $)$ $\angle S P V=\alpha$ (Angles between \tan and chord)
$\therefore \quad \quad \angle P T Q=\alpha($ Straight line $=180)$
$\therefore \quad \angle V P T=\angle P T Q=\alpha$ (Alternate angles)

(4 marks)

QUESTION 3

$A B C D$ is a quadrilateral. Diagonals $A C$ and $B D$ intersect at E.
If $A C$ bisects $\angle B A D$ and $\angle A B C=\angle A E D$, prove that $A B C D$ is a cyclic quadrilateral.
Let $\angle B A C=\angle C A D=\alpha \quad$ (Given bisector)
Let $\angle A B C=\angle A E D=\beta \quad$ (Given bisector)
In $\triangle A B C \quad \angle B C A=180-(\alpha+\beta) \quad($ Triangle $=180)$
In $\triangle E D A \quad \angle E D A=180-(\alpha+\beta) \quad($ Triangle $=180) \checkmark$
$\therefore \quad \angle B C A=\angle B D A=180-(\alpha+\beta)$
$\Rightarrow A B$ subtends $=\angle$ at C and $D \therefore$ Cyclic Quad $\quad \checkmark$

(3 marks)

QUESTION 4

Triangle PQR is inscribed in a circle with PR as a diameter. The perpendicular from P to the tangent at Q meets the tangent at S , prove that PQ bisects

Let $\angle Q P R=\alpha$
$\therefore \quad \angle P Q R=90 \quad$ (Angle in semi-circle) \checkmark
$\therefore \quad \angle P R Q=90-\alpha \quad($ Triangle $=180)$
$\therefore \quad \angle P Q S=90-\alpha \quad$ (Angle between tan and chord)
$\therefore \quad \angle S P Q=\alpha \quad$ (Triangle $=180)$
$\Rightarrow P Q$ bisects $\angle S P R$

(4 marks)

QUESTION 5

$O A B C$ is a parallelogram. A circle, centre at O and radius $O A$ is drawn. BA produced meets the circle at D.

Prove that DOCB is a cyclic quadrilateral.

Let $\angle A B C=\alpha$

\therefore	$\angle C O A=\alpha$	$($ Opp angles parallelogram)
\therefore	$\angle O A D=\alpha$	$($ Corr angles $=)$
\therefore	$\angle O D A=\alpha$	$($ Isos triangle radii $)$
\therefore	$\angle A O D=180-2 \alpha$	$($ Triangle $=180)$
\therefore	$\angle C O D=(180-2 \alpha)+\alpha=180-\alpha$	
\Rightarrow	$\angle D O C+\angle D B C=(180-\alpha)+\alpha=180 \quad($ Opp angles cyclic quad $)$	

QUESTION 6

Triangle $A B C$ has perpendiculars $C X$ and $B Y$ as shown.
(a) What can be said about quadrilaterals AXOY and BXYC? $A X O Y$ cyclic quad $\angle A X O+\angle A Y O=90+90=180$ $\angle B X C=\angle B Y C=90 \Rightarrow B X Y C$ cyclic quad $\quad \checkmark$
(2 marks)
(b) Prove that $\angle X A O=\angle X Y O=\angle X C B$.

$$
\begin{aligned}
& \angle X A O=\angle X Y O \quad \text { (XAOY cyclic quad }) \\
& \angle X Y O=\angle X Y B=\angle X C B \quad(\text { Cyclic quad })
\end{aligned}
$$

(2 marks)
(c) Prove that $A Z$ is perpendicular to $B C$.

$$
\begin{array}{rlrl}
& & \angle X A O & =\angle X A Z \text { and } \angle X C B=\angle X C Z \\
\Rightarrow & \angle X A Z=\angle X C Z \Rightarrow \text { Cyclic quad } X A C Z \\
\therefore & & \angle A X C=\angle A Z C=90 \Rightarrow A Z \perp B C
\end{array}
$$

QUESTION 7

RX is the bisector of $\angle Q R T$. Prove that PX bisects $\angle \mathrm{QPS}$.
Let $\angle Q R X=\angle X R T=\alpha$ (Given)

$$
\angle Q P X=\angle Q R X=\alpha
$$

(Angles same segment)
Since PXRS cyclic quad

$$
\begin{array}{ll}
\Rightarrow & \angle S P X=\alpha \text { (Exterior ang cyclic quad) } \\
\therefore & \angle Q P X=\angle S P X=\alpha \Rightarrow \text { Bisected } \\
\hline
\end{array}
$$

(3 marks)

