Stage 2 Chemistry

Skills and Applications Tasks

SACE ID _____

Time 80 minutes

- Questions 1 to 6, 74 marks
- Answer all questions
- Write your answers in this question booklet
- You may write on the space provided on the last page if you need more space

1 H Hydrogen 1.008																	2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31											13 Al Aluminium 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	^{Tin}	Antimony	Tellurium	Iodine	Xenon
85.47	87.62	88.91	91.22	92.91	95.94	(97)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	571	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CS	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89 ²	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	AC	Rf	Db	Sg	Bh	HS	Mt	DS	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganess
(223)	(226)	(227)	(267)	(268)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
¹ Lanthanide Series			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
			140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	
² Actinide Series			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Berkelium

(24) age 2 of (221)

Californium

Einsteinium

(252)

Fermium

(257)

Mendelevium

(258)

Nobelium

(259)

Lawrencium

(262)

PERIODIC TABLE OF THE ELEMENTS

Stage 2 Chemistry – Skills and Applications Task³¹03 Ref: A745205 (July 2018) © SACE Board of South Australia 2018

Protactinium

Uranium

238.0

Neptunium

(237)

Plutonium

(244)

Americium

(243)

Curium

(247)

Thorium

Metal activity

Symbols of common quantities

к	most reactive	amount of substance	n
Са		mass	m
Na		molar concentration	С
Mg		change in enthalpy	ΔH
AI		molar mass	М
Zn		volume	v
Cd		heat energy	Q
Co		specific heat capacity	С
Ni			
Bi		temperature	т
Cu			
Hg			
Ag			
	I see a second sec		

least reactive

Magnitude of physical constants

Avogadro's number	6.02 × 10 ²³ mol ⁻¹
heat capacity of water	4.18 J g ⁻¹ K ⁻¹

Table of SI prefixes

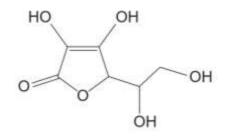
Au

SI prefix	Symbol	Value
tera	т	10 ¹²
giga	G	10 ⁹
mega	М	10 ^e
kilo	ĸ	10 ³
deci	d	10-1
centi	c	10-2
milli	m	10-3
micro	μ	10-6
nano	n	10**
pico	p	10-12

Mathematical	relationships
$n = \frac{m}{M}$	

$$Q = mC\Delta T$$

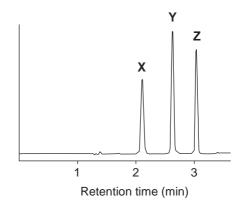
 $c = \frac{n}{V}$


$$\Delta H = \frac{Q}{n}$$
$$pH = -\log[H^*]$$

Stage 2 Chemistry – Skills and Applications Task - 03 Ref: A745205 (July 2018) © SACE Board of South Australia 2018

Question 2 (14 marks)

Vitamin C is found in many fruits and vegetables.


(a) The structural formula of vitamin C is shown below.

(i) Name *two* functional groups, other than hydroxyl groups, that are present in vitamin C.

(2 marks)

(ii) A mixture of three vitamins was analysed by chromatography, using a non-polar stationary phase and a polar mobile phase. Vitamin C is the most polar vitamin in the mixture. The chromatogram below shows the three peaks obtained (X, Y, and Z).

State and explain which peak corresponds to vitamin C.

__ (3 marks)

- (b) The concentration of vitamin C, C₆H₈O₆, in one fruit juice was determined by titration with a solution of I₃, using the following procedure:
 - **Step 1** A 20.00 mL sample of fruit juice was diluted to 200.0 mL with distilled water in a volumetric flask.
 - **Step 2** 25.00 mL of this diluted fruit juice was placed into a conical flask and titrated with a 2.400×10^{-4} mol L⁻¹ solution of L⁻. The equation for this reaction is shown below.

 $C_6H_8O_{6(aq)} + I_3(aq) \longrightarrow C_6H_6O_{6(aq)} + 2H^+(aq) + 3I^-(aq)$

- **Step 3** Step 2 was then repeated twice. An average titre of 15.65 mL was obtained.
- (i) Calculate the number of moles of I_3^- present in the average titre.

(2 marks)

(ii) Determine the number of moles of vitamin C present in 25.00 mLof the *diluted* fruit juice.

(1 mark)

(iii) Calculate the concentration, in mgL⁻¹, of vitamin C (M = 176.124 gmol⁻¹) in the *undiluted* sample of fruit juice.

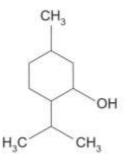
(4 marks)

(iv) State why an average titre produced from only three titrations could be considered to be reliable.

_____ (1 mark)

Page 5 of 12

Question 3 (13 marks)


Blood alcohol levels can be measured using breath-testing instruments. When a person blows continuously into one type of breath-testing instrument, ethanol present in the person's breath undergoes oxidation, producing an electrical current that can be measured and converted into a blood alcohol reading. This type of breath-testing instrument is classified as a fuel cell.

(b)	Explain how the operation of this type of breath-testing instrument identifies it as	a fuel cell.
(C)	Oxidation of ethanol occurs in two steps.	
	(i) Complete and balance the half-equation below to show the <i>first</i> step.	
	$C_2H_5OH \longrightarrow CH_3CHO$	(2 marks)
	(ii) State the systematic name of the product formed in the second step.	
		(1 mark)

Calculate the hydrogen ion concentration, in mol L^{-1} , in the electrolyte.

(2 marks)

- (e) Other alcohols present in a person's breath at the time of testing may add to the blood alcohol reading.
 - (i) Some cough medications contain the alcohol menthol. The structure of menthol is shown below.

(1) Classify menthol as a primary alcohol or a secondary alcohol.

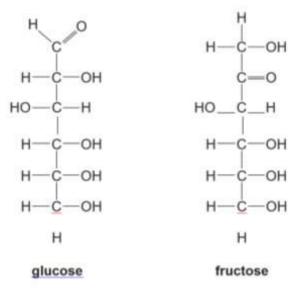
_ (1 mark)

(2) Draw the structural formula of the product that forms when menthol is oxidised.

(2 marks)

(ii) State why the presence of a tertiary alcohol in a person's breath would *not* add to the blood alcohol reading.

_____ (1 mark)


Question 4 (16 marks)

Glucose and fructose are fermentable sugars in grape juice, which is used to make wine.

(a) Write the equation for the fermentation of glucose in grape juice.

(2 marks)

(b) Glucose and fructose are isomers, having the same molecular formula. The structural formulae of glucose and fructose are shown below.

(i) State whether glucose and fructose are monosaccharides, disaccharides, or polysaccharides.

(1 mark)

(ii) State why glucose and fructose are chemically different compounds.

			(1 mark)
(iii)	Sar	mples of glucose and fructose were tested with Tollens' reagent.	
	(1)	State the observation that indicates a positive result.	
			(1 mark)
	(2)	(A) State whether you would expect a positive result or a negative result for gluco	ose.
			(1 mark)
		(B) State whether you would expect a positive result or a negative result for fruct	ose.
			(1 mark)

- (c) The sugar concentration of wine can be measured using tablets that contain copper (II) ions.
 - (i) Blue copper (II) ions in alkaline solution react with sugars present in wine to form orange copper (I) ions, as shown in the equation below.

 $2Cu^{2+} + 2OH^{-} + C_6H_{12}O_6 \longrightarrow 2Cu^{+} + H_2O + C_6H_{12}O_7$ blue orange

Write the formula of the oxidising agent in this reaction.

(ii) In order to test the sugar concentration of a wine, one of these tablets is added to a test tube that contains a 0.50 mL sample of wine. The resulting solution varies in colour according to its sugar concentration.

The table below is used to determine sugar concentration, and hence wine category, from the colour of the solution.

Colour	Sugar concentration (%)	Wine category
blue	0–0.1	control
olive green	0.1–0.2	dry white
dark brown	0.2–0.3	dry red
orange-brown	0.3–3.0	off-dry
orange	>3	sweet

- (1) The sugar concentration of one sample of wine was determined to be 0.15%.
 - (A) Identify the wine category of this sample of wine.

mark)

(B) Convert this concentration to $g L^{-1}$.

(2 marks)

_ (1

(2) The sugar concentration of another sample of wine was found to be 1.8 gL^{-1} .

Assume that the only sugars present in this sample of wine are glucose and fructose, and that these sugars are present in equal amounts.

Calculate the concentration of glucose, in mol L⁻¹, in this sample.

(3 marks)

 These tablets also react with compounds that occur naturally in red wine. Consequently, sugar concentration estimates of red wine obtained through this method are overestimated.

Identify whether the error in the estimated sugar concentration of a red wine sample is a random error or a systematic error.

(1 mark)

Question 5 (13 marks)

Beeswax is a mixture of many organic compounds, including hentriacontane, cerotic acid, and triacontanol.

(a) Hentriacontane, C₃₁H₆₄, is a long-chain hydrocarbon found in beeswax. The structural formula of hentriacontane is shown below.

н	l ³ c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CH31
(i)	State whether hentriacontane is a saturated or an unsaturated hydrocarbon.	
		(1 mark)
(ii)	(1) Identify one reagent that could be used to test hentriacontane for unsaturation.	
		(1 mark)
	(2) State the expected observation when hentriacontane is tested with this reagent.	
		(1 mark)
The	e structural formulae of cerotic acid and triacontanol are shown below	

(b) The structural formulae of cerotic acid and triacontanol are shown below.

cerotic acid

triacontanol

- (i) Cerotic acid and triacontanol react to form an ester that is also present in beeswax.
 - (1) Draw the structural formula of this ester.

(2 marks)

(2) Predict and explain whether this ester would have a higher melting point or a lower melting point than hentriacontane.

(3 marks)

- (ii) Triacontanol is a compound that promotes plant growth by increasing the rate of photosynthesis.
 - (1) Write an equation for the process of photosynthesis.

(2 marks

(2) Explain one advantage to the environment of increasing the rate of photosynthesis in plants.

(3 marks)