PART ONE – NO CALCULATOR OR NOTES 25 marks

35 minutes

$$ax^{2} + bx + c = 0$$

$$\therefore x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

QUESTION 1

(6 marks)

Solve algebraically for *x*:

(a)
$$21x^2 + 14x = 0$$

(2 marks)

(4 marks)

(6 marks)

Give exact solutions to each of the following equations by using the method stated,

expressing your answer in simplest surd form where appropriate.

(a) Solve $x^2 - 8x + 4 = 0$ by completing the square.

(3 marks)

(b) Expand and simplify and then use the quadratic formula to solve

(3 marks)

(6 marks)

(b) Using the discriminant only, state the relationship between the graph of

 $y = x^2 + 3x + 4$ and the X axis.

(2 marks)

solving the equation.

(7 marks)

Consider $3x^2 - 2x + c = 0$

(a) Show that the discriminant is $\Delta = 4 - 12c$.

																								·
-								-		-									-					
		1.1		:					÷															: :
																								: :
																							-	
-								-		-						-		-	-	-		-		÷
		1				1			1									1						: :
		 			÷					÷		÷						+		÷		÷		
		 					·					÷						÷		÷	 	·		
			-					-		-				-		-			-				-	

(1 mark)

(b) *Hence* find values of *c* for which the equation has:

(i) a repeated root ;

			· · · · · · · · ·			······		- <u>-</u>		· · · · · · · · ·		· · · · · · · · ·	· · · · · · · · · · · ·							r		·		
								-			-										-		-	
								-																
											-		-											· ·
										÷	-						-							: I.
	÷											 						-	 					
-																								in a second
										÷														
										1														
				· · · · · · · · · · · · · · · · · · ·																				
											-													5 E.
				1	1		1			1														
	· · · · · · · ·					¥							· · · · · · · · · · · · · · · · · · ·							ř				
																								4 - E
											-													
	÷	 				÷						 	 			****			 					
							1			1														
								-																
											-													

(2 marks)

(ii) no real roots ;

															÷		

(2 marks)

(iii) has rational roots. (Only 1 value needs to be given)

																		. 7	
	 																	. 7	
÷ .																			
 ÷	 		·	 	·												 		
÷ .	 																		
						-											 		
 ÷																			
	 																	i i	
						-											 		

PART TWO - CALCULATOR AND NOTES ALLOWED

34 marks

QUESTION 5 (6 marks)

Find the equation of each quadratic, given the following information.

(3 marks)

(3 marks)

(8 marks)

Consider the quadratic $y = 4x^2 - 8x - 5$;

(a) find the axis of symmetry and the vertex.

				÷																
1																				
				1										 					 	
																		-		
												;								
-÷				÷	÷				÷	·	÷	;		 					 	
1																				
÷			 · · · · · · · · · · · · · · · · · · ·	÷	÷				÷			÷	 	 			 		 	
1.1																				
1																				
÷	:			:			:				:									

(2 marks)

(b) (i) State the y intercept.

		· · · · · · ·	- p	· · · · · · ·	 			 	 · · · · · · · ·	 	 	 	 	 	 	- -		 - y	 		 p	· · · · · · · · · · · · · · · · · · ·	
																				-			
		-																					
-				÷		÷		 	 	 	 	 · · · · · · · · · · · · · · · · · · ·	 	 	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 ÷	 	÷	 		
	÷	· · · · · · ·		· · · · · · ·	 	· · · · · ·	·	 	 · · · · · · · ·	 	 	 	 	 	 		· · · · · · · ·	 - <u>-</u>	 	¥	 		
		-																					
																				-			

(1 mark)

(ii) Find the *x* intercepts.

							 											 		4 - F
																				i
																			. 7	
																				· · · · ·
					: :															
			: :		: :															1
					: :													 		
1 1					: :															. :
		 		 	·i		 			 								 		1
		 		 	·i		 								 			 		1
					: :													 		
		 		 			 					;	;	;	 	;		 		;
							 											 		2
: :					: :															
																		 		2
																				i
		 					 											 		2
					: :													 		

(c) Showing clearly the information found in parts (a) and (b) sketch the graph of the

quadratic $y = 4x^2 - 8x - 5$ on the axes given below.

(3 marks)

(9 marks)

(a) Find algebraically the co-ordinates of the point(s) of intersection of:

(4 marks)

(b) Consider the curve $y = -x^2 + 3x - 6$ and the line y = mx - 2.

Find the values of *m* for which the line is tangent to the curve.

(5 marks)

QUESTION 8 (6

(6 marks)

A right angled triangle is shown with hypotenuse of length 13 cm and the side BC is marked x cm.

(a) Given that side AB is 7 *cm* longer than BC, write AB in terms of *x*.

(1 mark)

(2 marks)

(b) (i) Using part (b) find the value of *x*.

⁽¹ mark)

(5 marks)

Fencing of 840 metres is used to construct 4 rectangular paddocks of equal size as shown in the diagram.

(1 mark)

(b) Show that the area of each pen is given by $A = 140x - x^2$.

 r		· · · · · · ·						· · · · · · ·			· · · · · · · · · · · · · · · · · · ·								T		7		7
													-										
													-						÷				
													-										
													-										
				:				:															:
			1		1.1					÷		1	-										
					1																		
	1		1		1			1	1			1											1
						-							-										

(1 mark)

(c) (i) If the area enclosed by each pen is to be maximized, what are the dimensions of each pen?

(2 marks)

PART ONE – NO CALCULATOR OR NOTES 25 marks 35 min

$$ax^{2} + bx + c = 0$$

$$\therefore x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

QUESTION 1

(6 marks)

Solve algebraically for *x*:

(a)
$$21x^2 + 14x = 0$$

 $7x(3x + 2) = 0 \checkmark$
 $\therefore x = 0 \text{ or } -\frac{2}{3} \checkmark$

(2 marks)

(b)
$$4x - \frac{6}{x} = -5$$

 $4x^2 - 6 + 5x = 0$
 $\therefore 4x^2 + 5x - 6 = 0$ \checkmark
 $\therefore (4x - 3)(x + 2) = 0$ \checkmark \checkmark
 $\therefore x = \frac{3}{4}$ or $x = -2$ \checkmark

(4 marks)

QUESTION 2

(6 marks)

Give *exact* solutions to each of the following equations by using the method stated, expressing your answer in simplest surd form where appropriate.

(a) Solve $x^2 - 8x + 4 = 0$ by completing the square.

$$(x-4)^2 = 12 \checkmark$$

$$\therefore x - 4 = \pm \sqrt{12} = \pm 2\sqrt{3} \checkmark$$

$$\therefore x = 4 \pm 2\sqrt{3} \checkmark$$

(3 marks)

35 minutes

(b) Expand and simplify and then use the quadratic formula to solve

$$(x + 3) (2x + 1) = 9.$$

$$2x^{2} + 7x + 3 = 9$$

$$\therefore 2x^{2} + 7x - 6 = 0 \quad \checkmark$$

$$\therefore x = -\frac{7}{4} \checkmark \pm \frac{\sqrt{49 + 48}}{4} \quad \checkmark$$

$$\therefore x = -\frac{7}{4} \pm \frac{\sqrt{97}}{4}$$

(3 marks)

QUESTION 3

(6 marks)

(a) Using the discriminant only, state the nature of the solutions for $-2x^2 + 5x - 2 = 0$.

 $\Delta = 25 - 4(-2)(-2) = 9 > 0 \checkmark$ $\therefore 2 \text{ rational distinct solutions} \checkmark$

(2 marks)

(b) Using the discriminant only, state the relationship between the graph of

 $y = x^2 + 3x + 4$ and the X axis. $\Delta = 9 - 16 < 0$ \checkmark \therefore Entirely above X axis (*ie* + *ve* definite) \checkmark

(2 marks)

(c) Find the sum and product of the roots of the equation $3x^2 - 6x + 2 = 0$ without solving the equation.

Sum roots = $-\frac{-6}{3} = 2$ Product roots = $\frac{2}{3}$

(7 marks)

Consider $3x^2 - 2x + c = 0$

(a) Show that the discriminant is $\Delta = 4 - 12c$.

$$\Delta = (-2)^2 - 4 \times 3 \times c \quad \checkmark = 4 - 12c$$

(1 mark)

- (b) *Hence* find values of c for which the equation has:
 - (i) a repeated root ;

$$4 - 12c = 0 \quad \checkmark$$
$$\therefore c = \frac{1}{3} \quad \checkmark$$

(2 marks)

(ii) no real roots ;

$$4 - 12c < 0 \checkmark$$

$$\therefore 4 < 12c$$

$$\therefore \frac{1}{3} < c \checkmark \text{ or write as } c > \frac{1}{3}$$

(2 marks)

(iii) has rational roots. (Only 1 value needs to be given)

4-12c = 1 or 4 or 9 etc ✓
∴ 12c = 3 or 0 or -5
∴
$$c = \frac{1}{4}$$
 or 0 or $-\frac{5}{12}$ etc ✓ (*One* value is all that is needed)

PART TWO – CALCULATOR AND NOTES ALLOWED

QUESTION 5 (6 marks)

34 marks

Find the equation of each quadratic, given the following information.

(3 marks)

(8 marks)

Consider the quadratic $y = 4x^2 - 8x - 5$;

(a) find the axis of symmetry and the vertex.

$$x = -\frac{-8}{8} = 1 \text{ Axis of symmetry } \checkmark$$
$$y = 4 - 8 - 5 = -9 \text{ or gcalc } \Rightarrow \text{ Vertex } (1, -9) \checkmark$$

(b) (i) State the y intercept.

(ii) Find the *x* intercepts.

$$4x^{2} - 8x - 5 = 0$$

$$\therefore (2x - 5)(2x + 1) = 0$$

$$\therefore x = \frac{5}{2} \text{ or } -\frac{1}{2} \checkmark \text{ or use gcale}$$

(2 marks)

(c) Showing clearly the information found in parts (a) and (b) sketch the graph of the quadratic $y = 4x^2 - 8x - 5$ on the axes given below.

(2 marks)

(9 marks)

(a) Find algebraically the co-ordinates of the point(s) of intersection of:

$$y = 2 - 2x \text{ and } y = 3x^2 - 5x - 4$$

$$2 - 2x = 3x^2 - 5x - 4 \checkmark$$

$$\therefore 0 = 3x^2 - 3x - 6 \checkmark$$

$$\therefore 0 = 3(x^2 - x - 2) = 3(x - 2)(x + 1)$$

$$\therefore x = 2 \text{ or } -1 \checkmark \text{ or use gcalc}$$

$$\therefore (2, -2) \text{ or } (-1, 4) \checkmark$$

(4 marks)

(b) Consider the curve $y = -x^2 + 3x - 6$ and the line y = mx - 2.

Find the values of *m* for which the line is tangent to the curve.

$$-x^{2} + 3x - 6 = mx - 2 \checkmark$$

$$\therefore 0 = x^{2} + (m - 3)x + 4 \checkmark$$

$$\Delta = (m - 3)^{2} - 16 = 0 \text{ (Tangent)} \checkmark$$

$$\therefore m - 3 = \pm 4$$

$$\therefore m = 7 \text{ or } -1 \checkmark$$

(5 marks)

(6 marks)

A right angled triangle is shown with hypotenuse of length 13 cm and the side BC is marked $x \ cm$.

(a) Given that side AB is 7 *cm* longer than BC, write AB in terms of *x*.

 $AB = x + 7 \checkmark$

(b) Explain why $2x^2 + 14x - 120 = 0$.

$$x^{2} + (x + 7)^{2} = 13^{2}$$
 (Pythagoras)
 $\therefore 2x^{2} + 14x + 49 = 169$
 $\Rightarrow 2x^{2} + 14x - 120 = 0$

(2 marks)

(1 mark)

(c) (i) Using part (b) find the value of x.

$$2(x^{2} + 7x - 60) = 0$$

$$\therefore 2(x + 12)(x - 5) = 0$$

$$\therefore x = -12 \text{ or } x = 5 \checkmark \text{ But } x > 0$$

$$\Rightarrow x = -12 \text{ not feasible } \checkmark \Rightarrow \text{ Only value is } x = 5 \text{ or use gcalc}$$

(2 marks)

(ii) Find the area of the triangle.

Area
$$\Delta = \frac{5 \times 12}{2} = 30 \ cm^2 \checkmark$$

(5 marks)

Fencing of 840 metres is used to construct 4 rectangular paddocks of equal size as shown in the diagram.

(b) Show that the area of each pen is given by $A = 140x - x^2$.

$$x + y = 140 \implies y = 140 - x$$

Area of each pen = $xy = x(140 - x)$ \checkmark = $140x - x^2$

(1 mark)

(c) (i) If the area enclosed by each pen is to be maximized, what are the dimensions of each pen?

Maximum when $x = -\frac{-140}{2 \times 1} = 70$ $\therefore y = 140 - x = 140 - 70 = 70$ \therefore Dimensions are 70m by 70 m

(2 marks)

(ii) Describe the shape of each pen.

Since $x = y = 70 \implies$ Square \checkmark