NAME:

PART A: NO CALCULATOR

QUESTION 1

Solve algebraically to find the exact value for x :
(a) $3^{2 x-1}=\sqrt{3}$

(b) $25^{x}=\left(\frac{1}{5}\right)^{1+2 x}$

QUESTION 2
 9 marks

(a) Expand and simplify (where possible):
(i) $\left(a^{x}-7\right)\left(2 a^{x}+5\right)$
(ii) $2^{-x}\left(2^{3 x}-2^{-2 x}\right)$
(b) Fully factorise:
(i) $49^{x}-9$
(2 marks)
(ii) $25^{x}-4\left(5^{x}\right)+3$
(3 marks)

QUESTION 3

11 marks

(a) Algebraically determine in simplest form:
(i) $\log \left(\frac{10000}{10^{3 x}}\right)$
(2 marks)
(ii) $\log _{3}(27 \sqrt{3})$
(2 marks)
(b) Write the following as a single logarithm or integer:
(i) $\log 50+\log 2$
(ii) $\frac{1}{3} \log 8-\log 4$
\qquad
(iii) $4 \log 2+\log 5-1$
(3 marks)

QUESTION 4

10 marks
(a) Show that $\frac{2 \log 27}{\log 9}=3$.
(b) (i) Simplify $\sqrt{98}-3 \sqrt{8}$
(ii) Simplify $(a \sqrt{b}-c)(a \sqrt{b}+c)$
(iii) Explain with algebraic working why $\frac{\sqrt{6}}{3-\sqrt{6}}=2+\sqrt{6}$

PART B: CALCULATOR ALLOWED

NAME:

QUESTION 5

6 marks

Solve algebraically (show all working) for the unknown in the following, giving your answers correct to 2 decimal places:
(a) $5^{x}=73$

(b) $2^{x-1}=17$
(c) $\log _{2}(x+1)=3$

(2 marks)

QUESTION 6

5 marks

The weight, W_{t}, grams of radioactive material remaining after t years is given by the formula $W_{t}=40 \times 2^{\frac{-1}{5} t}$.

Find:
(a) the initial weight present;
(b) (i) the amount present after 15 years.
(ii) the amount present after 30 years.
(c) How long it would take to decay to a 'safe level' of 5% of its original value?

NAME:

PART A: NO CALCULATOR

QUESTION 1

5 marks
Solve algebraically to find the exact value for x :
(a) $3^{2 x-1}=\sqrt{3}$

$$
\begin{aligned}
& 3^{2 x-1}=3^{\frac{1}{2}} \\
& \therefore 2 x-1=\frac{1}{2} \\
& \therefore \quad 2 x=\frac{3}{2} \\
& \therefore \quad x=\frac{3}{4}
\end{aligned}
$$

(b) $25^{x}=\left(\frac{1}{5}\right)^{1+2 x}$

$$
\begin{aligned}
& 5^{2 x}=5^{-1-2 x} \\
& \therefore 2 x=-1-2 x \\
& \therefore 4 x=-1 \\
& \therefore \quad x=-\frac{1}{4}
\end{aligned}
$$

QUESTION 2
 9 marks

(a) Expand and simplify (where possible):
(i) $\left(a^{x}-7\right)\left(2 a^{x}+5\right)=2 a^{2 x}+5 a^{x}-14 a^{x}-35 \checkmark=2 a^{2 x}-9 a^{x}-35$
(ii) $2^{-x}\left(2^{3 x}-2^{-2 x}\right)=2^{2 x}-2^{-3 x} \quad \checkmark \quad \checkmark$
(b) Fully factorise:
(i) $49^{x}-9=\left(7^{x}+3\right)\left(7^{x}-3\right) \checkmark \checkmark$
(ii) $25^{x}-4\left(5^{x}\right)+3$

$$
\begin{aligned}
& =\left(5^{x}\right)^{2}-4\left(5^{x}\right)+3 \\
& =\left(5^{x}-3\right)\left(5^{x}-1\right) \\
& \quad \checkmark
\end{aligned}
$$

(3 marks)

QUESTION 3

11 marks
(a) Algebraically determine in simplest form:
(i) $\log \left(\frac{10000}{10^{3 x}}\right)=\log \left(\frac{10^{4}}{10^{3 x}}\right) \quad \checkmark=4-3 x \quad \checkmark$
(2 marks)
(ii) $\log _{3}(27 \sqrt{3})=\log _{3}\left(3^{3} \times 3^{\frac{1}{2}}\right) \checkmark=\log _{3}\left(3^{\frac{7}{2}}\right)=\frac{7}{2} \checkmark$
(2 marks)
(b) Write the following as a single logarithm or integer:
(i) $\log 50+\log 2=\log (50 \times 2) \checkmark=\log 100=2 \checkmark$
(2 marks)
(ii) $\frac{1}{3} \log 8-\log 4=\log \left(\frac{8^{\frac{1}{3}}}{4}\right) \checkmark=\log \left(\frac{2}{4}\right)=\log \left(\frac{1}{2}\right) \quad \checkmark \quad$ or $=\log _{1}-\log _{2}=-\log 2$
(2 marks)
(iii) $4 \log 2+\log 5-1=\log (16 \times 5) \checkmark-\log 10 \checkmark$

$$
\begin{aligned}
& =\log \left(\frac{80}{10}\right) \\
& =\log 8
\end{aligned}
$$

QUESTION 4

10 marks

(a) Show that $\frac{2 \log 27}{\log 9}=3$.

$$
\begin{aligned}
\frac{2 \log 27}{\log 9} & =\frac{2 \log 3^{3}}{\log 3^{2}} \\
& =\frac{6 \log 3}{2 \log 3} \\
& =3
\end{aligned}
$$

(b) (i) Simplify $\sqrt{98}-3 \sqrt{8}$

$$
\sqrt{49 \times 2}-3 \sqrt{4 \times 2}=7 \sqrt{2}-6 \sqrt{2} \quad \checkmark=\sqrt{2}
$$

(ii) Simplify $(a \sqrt{b}-c)(a \sqrt{b}+c)$

$$
(a \sqrt{b}-c)(a \sqrt{b}+c)=a^{2} b-c^{2} \quad \checkmark \checkmark
$$

(iii) Explain with algebraic working why $\frac{\sqrt{6}}{3-\sqrt{6}}=2+\sqrt{6}$

$$
\begin{aligned}
\frac{\sqrt{6}}{3-\sqrt{6}} \times \frac{3+\sqrt{6}}{3+\sqrt{6}} \checkmark & =\frac{3 \sqrt{6}+6}{9-6} \\
& =\frac{3 \sqrt{6}}{3}+\frac{6}{3} \\
& =\sqrt{6}+2 \text { or } 2+\sqrt{6}
\end{aligned}
$$

PART B: CALCULATOR ALLOWED
NAME: \qquad

QUESTION 5

6 marks

Solve algebraically (show all working) for the unknown in the following, giving your answers correct to 2 decimal places:
(a) $5^{x}=73$

$$
\begin{aligned}
& x \log 5=\log 73 \\
& \therefore \quad x=\frac{\log 73}{\log 5} \approx 2.67
\end{aligned}
$$

(b) $2^{x-1}=17$

$$
\begin{aligned}
& (x-1) \log 2=\log 17 \quad \checkmark \\
& \therefore \quad x-1=\frac{\log 17}{\log 2} \\
& \therefore \quad x=\frac{\log 17}{\log 2}+1 \approx 5.09
\end{aligned}
$$

(c) $\log _{2}(x+1)=3$

$$
\begin{aligned}
& x+1=2^{3}=8 \\
& \therefore \quad x=8-1=7 \quad \\
& \hline
\end{aligned}
$$

QUESTION 6

5 marks

The weight, W_{t}, grams of radioactive material remaining
after t years is given by the formula $W_{t}=40 \times 2^{\frac{-1}{5} t}$.
Find:
(a) the initial weight present;

$$
W_{0}=40 \text { grams } \quad \checkmark
$$

(b) (i) the amount present after 15 years.

$$
W_{15}=5 \text { grams }
$$

(ii) the amount present after 30 years.

$$
W_{30}=0.625 \text { grams }
$$

(c) How long it would take to decay to a 'safe level' of 5% of its original value?

$$
\begin{aligned}
& 5 \% \text { of } 40=0.05 \times 40=2 \text { grams } \\
& \text { Using gcalc in graph mode } t \approx 21.6 \text { years }
\end{aligned}
$$

