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Question 1 (6 marks)

Liquid is poured into a chemical flask at a rate of 2cm? per second. The volume, V, of the liquid in

11
the flask is given by V' = TEhz —%h3, where /4 is the height of the liquid in the flask measured in

centimetresand 0< A2 <5.

(@) Find & when the volume is 200z cm’.

(1 mark)

1 dv

(b) Showthat oL 4V
dt  mh(11-h) dt

(2 marks)

(c) Hence, find the rate of change of the height of the liquid in the flask at the instant when the

volume of the liquid is 2007 cm’. State the answer correct to three significant figures.

(3 marks)
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Question 2 (6 marks)

1 1
It is known that fxezxdx = Exezx —Zez)‘ +c¢, where ¢ is a constant.

This result may be assumed.

(a) Using the information given above and integration by parts, show that

szezxdx = %eb‘ x2-x+ %) +k, where k is a constant.

(3 marks)

Figure 1 displays the graph of y = xe™.

y
3
2
1
< — >X
-5 -4 = =2 -1 | )
N\
_1'
Figure 1
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(b) The graph of y = xe” in Figure 1 is rotated 27 radians about the x-axis from x =—1to x=0.

Find the exact value for the volume of the solid formed.

(3 marks)

page 5 of 19 PLEASE TURN OVER



Question 3 (9 marks)

(a) (i) Show that 20is3?ﬂ is a solution of z°

=-32.

(1 mark)
(i) Use De Moivre’s theorem to show that all the solutions to 2 =-32are
=2, 2cis T , 2cis 3—ﬂ , 2cis —3—ﬂ ,and 2cis T .
5 5 5 5
(2 marks)
7 +32 4 3 2
(b) (i) Show that =z =27 +4z" -8z+16, z# 2.
7+2
(1 mark)
(i) Hence, state in exact rcis® form the solutions to z* —2z° +4z* —8z+16 =0.
(1 mark)
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(c) The four solutions found in part (b)(ii) are shown in Figure 2.

Im(z)
A
B 12
A
) 0 7 Re(3)
D
C
A
Figure 2

(i) Show that the area of triangle AOD = 2sin2?n.

(2 marks)

(i) The area of quadrilateral ABCD = asin%r +bsin4?n, where a and b are real constants.

Find the values of ¢ and 5.

(2 marks)
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Question 4 (7 marks)
Consider the function y =(2x+1)e" and its derivatives, where

d_y is the first derivative,

dx

d’y
dx*

is the second derivative,

d’y
dx®

is the third derivative, and so on.

d"y

"

In general, the n™ derivative of y is

(a) Show that %:(2x+3)ex.
X

(2 marks)
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(b) For the function y = (2x+1)ex, use mathematical induction to prove that for all positive integers n

d"y

n

s (2x+(2n +1))ex.

(5 marks)
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Question 5 (8 marks)

(a) Show that (2a+3b)x(a+5b)=Taxb.

(2 marks)
(b) Figure 3 shows the vectors 0C= a, CD= a, DE = 3b, and CF = 5b.
D __E
C F
0
Figure 3
(i) Find OE in terms of @ and b.

(1 mark)

(i) Show that the area of triangle OEF =% laxb|.
(2 marks)
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13
(iii) Show that the area of quadrilateral ODEF = B} | axb |

(1 mark)

(c) Ifa=[1,24]and b=[3,1,—5], find the area of quadrilateral ODEF.

(2 marks)
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Question 6 (9 marks) Im(2)

A
The circle shown in the Argand diagram
in Figure 4 has centre at the positive ke
real number &, and radius £ units.
0 z > RG(Z)
A
Figure 4
(a) Draw the ray defined by argz = % on Figure 4. (1 mark)
(b) The ray intersects the circle at point P in the first quadrant.
(i) Find in terms of k£ the complex number at P in Cartesian form.
(1 mark)
(i) Find in terms of k£ the complex number at P in polar form.
(1 mark)
The Argand diagram in Figure 5 shows circles I ( )
C,, C,, and C,. With the sequence continuing, T
consider the centre of C, is at the real number 2" c
and the radius of C, is 2" units. 2
C
Figure 5
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(c) Write the equation of circle C, in terms of z.

(2 marks)

(d) Consider the complex number v=5+3i.

Show that v lies inside the circle C,.

(2 marks)

(e) Consider the complex number w = 10cis%.

Find the smallest positive integer value of n such that w lies inside the circle C,. Support your
answer using appropriate mathematical reasoning.

(2 marks)
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Question 7 (10 marks)

(a) (i) Show that sin® x =sinx —sinxcos” x.

(1 mark)
E 5
(i) Hence, show that fsin3x dx = BV
0
(3 marks)
Figure 6 shows the graph of f(x)=sin’x, —% <x< %
L ,
3 s
Sy=x
T ////
3 /
. // / f()()
/// /
< / .-
E 2 r id
3 / 6 5 3
/// T
e
/7
/// _
’ 3
Figure 6
(b) Sketch and label the graph off_1 (x) on the axes in Figure 6, above. (2 marks)
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Figure 7 shows the graph of a function g (x).

y
A
3
Tl
g(x) °
A : Px
_r _F Ki2 L
3 6 6 3
T
6
T
-3V
Figure 7

(c) Given that the function g(x) may be written in terms off(x), circle the correct answer from the
following options.

g(x)= /() g(¥)=f(=x) | | e(x)=s"(x) | | g(x)=7r"(x])

(1 mark)

Figure 8 shows the graph of functions f(x)and f ' (x) reflected around each of the axes.

y
4

T
3

Figure 8

Question 7 continues on page 16.
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In Figure 9 below, the graphs from Figure 8 are shown contained within the square defined by

T T b4 T
——<x<—and ——Syég.

>

w1

Figure 9

(d) Find the exact area of the shaded portions of Figure 9.

(3 marks)
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You may write on this page if you need more space to finish your answers to any of the questions in
this question booklet. Make sure to label each answer carefully (e.g. 4(b) continued).
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You may write on this page if you need more space to finish your answers to any of the questions in
this question booklet. Make sure to label each answer carefully (e.g. 4(b) continued).
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Question 8 (15 marks)

(a) (i) Show that the point (i 0, Oj is on the plane ax+by +cz=d,, where a # 0.
a

(1 mark)
(i) Show that the distance between the planes ax+by+cz=d, and ax+by +cz=d,
d,—d
is —| L2 | .
Ja? +b +¢?
(1 mark)
Consider the planes P, :2x—y+z=20and P, :2x— y+z=-10.
(b) (i) Find the distance between the planes.
(2 marks)
(i) Find the equation of the normal to P, through 4 (10,2, 2).
(2 marks)
(iii) Show that this normal meets P, at B (O, 7, —3).
(3 marks)
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Figure 10 shows plane P;is parallel to P, and P,,
with P, between P, and P;. Normal

The distance between P, and P, is three times the

distance between P, and P;. !
¢ P
3
(c) Find the equation of P;.
e 4 Pl
[ ¥ p2
(2 marks) Figure 10
(d) Theline [is on Py and passes through the normal found in part (b)(ii).
Shown in Figure 10 is C, which is any point on /.
(i) Explainwhy |BC|<|AC|+ |4B|.
(1 mark)
(i) Find the coordinates of Cif | BC | = | AC| + | 4B|.
(3 marks)
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Question 9 (14 marks)

(a) Show that f\/l +c0s2x dx =~/2sinx+c, where —% <x< % and c is a constant.

(2 marks)
~
Figure 11 shows a pendulum connected by
string to point A, allowing it to swing from
side to side. As the pendulum swings, it
partially wraps against the solid structure
shaded in Figure 11.
Pendulum
Figure 11

(b) The parametric equations for the path of the pendulum shown in Figure 11 for a string length of
4 units are

x(t)=2t+sin2t P T
{ for ——<¢< E where t is a real parameter.

y(t)=-2cos’t
Sketch on Figure 12 the path of the pendulum.

Y
12

T T T

—4 -2 0 2 4

=

—34

Figure 12 (3 marks)
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In general, the parametric equations for the path of a pendulum with string length 4a units are given by

t)=a(2t+sin2¢
x( ) a( e ) for —EStSE.
y(t)=—2acos’t 2 2

(c) (i) Show that
{x’(t) =2a+2acos2t

y'(t)="2asin2t

(2 marks)
(i) Hence, show that the path of the pendulum has an arc length
2
[= Zaﬁj 1+ cos2t dt.
_r
2
(3 marks)

Question 9 continues on page 6.
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(d) (i) Given that the arc length for the path of the pendulum is / = & x (string length).

Use parts (a) and (c)(ii) to find the value of k, where £ is an integer.

(3 marks)

(i) Hence or otherwise, state the arc length for the path of the pendulum when a =1.

(1 mark)
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You may write on this page if you need more space to finish your answers to any of the questions in
this question booklet. Make sure to label each answer carefully (e.g. 9(c)(ii) continued).
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Question 10 (16 marks)

Two chemicals react to form a new compound.
The unreacted mass of one chemical is 4kg.
The unreacted mass of the other chemical is Bkg.

The mass of the new compound is X kg.
dA 1dX

The rate of change of unreacted mass A4 is given by I = _ZE where ¢ is measured in minutes.
t
/A 1 dX
(a) Use integration to show that the solution to the differential equation C;; = —462 is
t t
A :—iX+2, given that 4 =2 when X' =0.
(2 marks)
L dB 3dX . —
The rate of change of unreacted mass B is given by o = _ZE where ¢ is measured in minutes.
Given that B =3 when X =0, it is known that B = —%X+3.
: . : . . L dx 1
The differential equation for the rate of increase in mass X'is given by I = gAB.
ax 1
b) Show that —=—(X -8)(X —4).
b) dt 16( )( )
(2 marks)
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1 1 1 1
(c) Show that (X—8)(X—4) _Z[X—S_X—4j'

(2 marks)

Question 10 continues on page 10.
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1
(d) (i) Hence, solve the differential equation % = E(X —8)(X —4) using integration techniques

and the condition that # = 1 when X' =1 to show that

1
24-28e4 "

3- 7ei(t_l)

X

(6 marks)
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(1)

12
1

=4+

(i) Hence, show that X

3-7e*

(1 mark)

(iii) Using part (d)(ii), state the limiting value of X as ¢ increases.

(1 mark)

lAB.

3

Draw the solution curve for ¢ > 1, which begins at the given point (1,1).

ax
dt

(e) Figure 13 shows the slope field for the differential equation

X
A

N~ Y~ Y~~~
—~ O~ — s~~~ ~— ~— ~

-
— m— m— m— e e e — — — ~—

—_ —_— —_— —_— —_— —_——
—_— — — —_— — — — — — — — —
— — —

~
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on o —

(2 marks)

Figure 13
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You may write on this page if you need more space to finish your answers to any of the questions in
this question booklet. Make sure to label each answer carefully (e.g. 10(d)(i) continued).
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SPECIALIST MATHEMATICS FORMULA SHEET

Circular functions

sin’4+cos’4 =1

tan’A + 1 = sec’4

1+ cot’4 = cosec >4

sin( A+ B) =sin Acos B+ cos Asin B
cos(A+ B)=cos Acos B Fsin Asin B

tan A+ tan B
1¥tan Atan B

tan( A+ B)

sin2A4 =2sin Acos A
c0s2A =cos’A—sin’4
=2cos’4—1
=1-2sin’4
2tan 4
1—tan’4
2sin Acos B =sin( A+ B)+sin(A—B)

tan2A4 =

2cos Acos B =cos(A4+B)+cos(A—B)
2sin Asin B = cos(A—B)—cos(A +B)
sin4+sinB = ZSin%(A + B)cos%(A ¥B)
cos A+cosB = 2005%(A+B)cos%(A -B)

cosA—cosB = —ZSin%(A + B)sin%(A—B)

Matrices and determinants

IfA:{a b}then det 4 =|A|=ad —bc and
c d
[ b

‘A‘ - al

Measurement
r
Arc length, / =r0, where 0 is in radians.

Area of sector, 4 =

In any triangle 4BC: A

B a

Area of triangle = %ab sinC

a b ¢
sind sinB sinC

a* =b*+c* = 2bccos A

20, where @ is in radians.

Quadratic equations

—b++/b* —4ac

2a

If ax* + bx+c =0 then x =

Distance from a point to a plane
The distance from (x;, y;, 7, ) to
Ax+ By+Cz+ D =0 is given by
‘Ax1 + By, +Cz +D‘

JA2+ B+
Derivatives
. dy
xX)= X)=—
f@)=y | S=F
. 1
arcsin x
1-x°
-1
arccos x >
1—x
1
arctan x 1+ 52

Properties of derivatives
d

)2 0)= () () (2)
d[f(X)j:f'(X)g( —/(x)¢'(x)

dx g(x)
d

x)
(g(x))
4 (o) = 7 ()

Arc length along a parametric curve
b

l:f vevdt, where a <t <bh.

a

Integration by parts

J 1 @)eg()ar=f (x)g(x)- [ £ () (x)ds

Volumes of revolution

b
About x axis, V = fﬂy2dx, where y is a function of x.
a

d
About y axis, V = fﬂxzdy, where y is a one-to-one

function of x.

This formula sheet will be provided in examinations from November 2018. © SACE Board of South Australia.



